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ABSTRACT  

Laminar forced convection heat transfer in a Newtonian fluid flow in a channel between two parallel 
plates has been investigated analytically. Fully developed laminar velocity distributions obtained by 
variable separable method was used, and viscous dissipation was taken into account. The theoretical 
analysis of the heat transfer is performed for three different cases of constant heat boundary 
conditions. The significant effect of the viscous dissipation as compared to other terms in the energy 
equation is manifested by the Brinkman number. In other to have a generalized idea about the viscous 
heating effect on the heat transfer analysis, different definitions of the Brinkman number have been 
used  in the present study. Here, focus is on the viscous dissipative effect due to internal fluid friction for 
the flow of a Newtonian fluid with constant properties. The prominent role of the viscous dissipation on 
heat transfer characteristics has been discussed in detail for the problem under consideration subjected 
to different thermal boundary conditions. 

Key words:  Forced convection, heat transfer, Newtonian fluid, viscous dissipation, laminar flow, Parallel 

plates. 

List of Symbols   

a1 Parameter defined in Eq. (8).     Br Brinkman number  
a2 Parameter defined in Eqs. (30a), (30b) and (30c)  Brq1 Modified Brinkman number 
a3 Parameter defined in Eqs. (47a), (47b) and (47c)  K Thermal Conductivity  (W/mk) 
Cp Specific Heat at Constant Pressure (J/gk)   L width of Plate (m) 
h Convective heat transfer Coefficient    Nu Nusselt number  
P Pressure       u velocity (m/s) 
q1 Upper wall heat-flux (w/m2)    q2 Lower Wall heat-flux (w/m2) 
T Temperature (k)     T1 Upper wall temperature (k) 

T2 Lower wall temperature (k)    T General temperature difference (k) 
U Dimensionless velocity      w half – channel height (m) 
W Channel height (=2w) (m)    x Coordinate in the axial direction (m) 
y Coordinate in the vertical direction (m)   Y Dimensionless vertical coordinate         

Greek symbols  
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 Thermal diffusivity (m2/s)     dynamic viscosity (Pas)  

 Dimensionless Temperature     m Mean dimensionless temperature  

 density (kg/m2) 

Subscripts  

c centreline       m mean     
Corresponding Author Email: uwaezuokemartin@gmail.com 

 

1. Introduction 

Increasing degree of miniaturization in devices, has lead to studies in micro-scale heat and fluid flow 

[1,2], since the thermal behavior in small devices and in micro-channels may deviate substantially from 

that in large objects. One of the effects that could play an important role in micro-channel is the viscous 

dissipation effect, and the role of the Brinkman number has been shown to be of relevance [3]. Although 

there have been many studies on viscous dissipation reported in the literature [4-16], it is of interest to 

obtain analytical results where ever possible for bench-marking and for better understanding of the 

process. Expressions for the Nusselt number as a function of the Brinkman number is of such basic 

importance, but survey showed that even for the simple flow conditions in simple geometry, the results 

haves not been exhaustibly reported (eg. [17-19]). 

Therefore, the objectives of this study is to mathematically solve the forced convection heat transfer 

problem between two stationary plates subjected to different constant heat fluxes for fully developed 

region, which is an extension of a study by Aydin and Avci [19] where analytical expressions for Nusselt 

number for fully developed flow between parallel plates were reported. Our studies examined 

systematically, the solutions for the simple constant heat flux boundary conditions, and come to the 

conclusion that some of the reported results were different from what we have obtained independently. 

For ease of comparison, we have also followed [19] in the use of two definitions of the Brinkman 

number; one in terms of a temperature difference and the other in terms of a constant heat flux. The 

temperature distributions are also reported. 

2. Mathematical Model and Formulation 

Figure 1 shows the physical model and coordinate systems. A Newtonian fluid with fully developed 

velocity profile  u y  flows between two rectangular stationary plates of 2w  apart. The plates are 

convectively heated or cooled by the surrounding medium of constant heat fluxes 1q  and 2q . 
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                                             Fig. 1. Notation to the problem. 

2.1 Governing Equations 

The momentum and the energy equation for incompressible fluid flow are found to be relevant to this 

study. They are as follows: 

The momentum equation is given by 

            (1) 

The velocity boundary conditions are 0u    when y w  , and 0u   when y w    

The maximum velocity  cu  occurs midway  0y   between the two parallel plates. Thus the well 

known parabolic velocity distribution is given by;  

 (2) 

In order to illustrate the solution technique without complicating analytical procedure further, a number 

of simplifying assumptions are made for the simplified basic equations as: 

1. The flow mode is laminar, steady and axial symmetry. 

2. The fluid physical properties are independent of temperature and pressure. 

3. The axial heat conduction is negligible relative to vertical heat conduction. 

4. The natural convection effects are neglected. 

In this case, the steady state heat balance taking viscous dissipation into account is expressed as follows:  

                                                                                        (3) 

Where  , pc  and k  are the density, specific heat and thermal conductivity, respectively. In addition, 

the second term on the right-hand side is the viscous dissipation term effects. 
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2.2 Both Plates at Different Constant Heat Fluxes  

Consider the case where the upper plate at constant heat flux 1q  and he lower plate at constant heat 

flux 2q  as shown in Fig. 1.  

Substituting Eq.(2) into Eq.(3), 

  
2 22 2

2 2 4

4
1 c

p c

u yy T T
c u K

w x y w
 

   
   

  
                             (4) 

Taking 
p

k

c



   and for the constant heat flux case, 1dTT

x dx





 where T1 is the upper wall 

temperature, Eq. (4) becomes 

2 22 2

1 1

2 2 4

4c c c

p

U U U ydT dTT y

y dx w dx C w



  


  


    (5) 

By introducing the non-dimensional quantities  

  1

1

,
T Ty

Y and
q ww

k




         (6) 

Eq. (5) can be written as  

  
22

2 2 2 21 1

2 2 4

1 1 1

4 164c c c

p

u u udT dTwk wk wk
w Y w Y

Y q dx w q dx c q w

 

  


  


   (7)  

Let 1
1

1

cu kw dT
a

q dx
  and modified Brinkman number  

2

1

1

cu
Brq

wq


           (8) 

Therefore Eq. (7) becomes  

  
2

2 2

1 12
(1 4 ) 64

d
a Y Brq Y

dY


          (9) 

The thermal boundary conditions are  
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 (I)    
1

T
k q

y

 
   

 
  at   y w , or  1

Y





 at  

1

2
Y                                     (10a)   

(II)      1T T  at  y w , or 0   at 
1

2
Y                                                      (10b) 

(III)     2

T
k q

y

 
  

 
at  y w  , or 2

1

q

Y q


 


   at    

1

2
Y        (10c)   

The solution of Eq. (9) under the above thermal boundary conditions is  

  4 22 2 2

1 1 1

4 22
1

1

1 3 3 1 3 3 1 1

3 2 2 2 2 2 2 2

3 13 1
8 4

32 32 2
r

q q q
Y Y Y Y

q q q

q
B q Y Y

q


     

           
     

 
      

 

           (11) 

In fully developed flow, it is usual to utilize the mean fluid temperature, mT , rather than the centre-line 

temperature when defining the Nusselt number. This mean or bulk temperature is given by   

 
m

uTdA
T

udA









           (12) 

Where 
2

2

2
1

3
c c

y
u dA u Lw

w
 

 
  

 
         (13) 
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8 2
. ..

35 3

c c

c c

q w qy
u TdA u Lw

w k q
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Brq u Lw u LwT
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    (14) 

 
And L is the width of the plate. Therefore, 

           1 2 1
1 1

1

9 13 12

70 35 35
m

q w q q w
T Brq T

k q k

      
         

     
      (15) 

The dimensionless mean temperature is given by  

 1

1

( ),m m

k
T T or

q w
           (16) 
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 2
1

1

9 13 12

70 35 35
m

q
Brq

q


   
     

  
       (17) 

At this point, the convective heat transfer coefficient can be evaluated by the use of the defining 

equation  

              1 1 mq h T T                          (18) 

Defining Nusselt number to be 
hw

Nu
k

         (19) 

 1

1

1

m m

q w

T T k 
  


, using Eq.(16)       (20) 

Therefore, on using Eqs (17) and (20), we have the new result  

  
2

1

1

70

9 26 24

Nu
q

Brq
q


 

   
 

       (21) 

2.2.1 Upper Plate at Constant Heat Flux 1q  and Lower Plate Insulated  

From Eq. (21), when 2 0q  , 

 
1

35

13 12
Nu

Brq



            (22) 

This also a result not found in the literature  

2.2.2 Upper Plate and Lower Plate At Equal Constant Heat Flux 1q  

In this case, letting 1 2q q in Eq. (21) 

  
1

70

17 24
Nu

Brq



                                    (23) 

This result is identical to that derived by Aydin and Avci [15]. For the case of no viscous  dissipation, 

1 0Brq  , then 
70

17
Nu   which is an established result [16] 

2.3 Solutions Using a Brinkman Number Based on Temperature Deference   
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In addition to the previous results, reference [15] also analyzed the problem using a Brinkman number 

based on a temperature difference T : 

  
2

cu
Br

k T





             (24) 

The dimensionless temperature is also redefined using a temperature difference instead of heat flux. 
 
2.3.1 Upper and Lower Plates Both At Equal Constant Heat Flux 

Consider the case where both plates have same input heat fluxes 1q  , which is Fig. 1 with 2 1q q . By 

symmetry, it is assumed that the plates will be at equal temperature, 0T , but which varies along the x

direction.  

Therefore, Eq. (5) becomes 

   
2 22 2

0 0

2 2 4

4c c c

p

u dT u dT u yT y

y dx w dx c w



  


  


                             (25) 

By introducing the following non-dimensional quantities, 

 0

0

, ,
c

T Ty
Y

w T T



 


 where cT  is the centreline temperature     

(26) 

Eq. (25) becomes  

 
   

2 2 2
2 2 20 0

2

0 0

4 64c c
c

c c p

u dT u dTw w
Y u Y

Y dx T T dx T T c

 

  


   

  
    (27) 

Let 
 

2

0
2

0

c

c

U dT w
a

dx T T



            (28) 

Therefore Eq. (27) becomes  

  
22

2 2

22

0

(4 1) 64
( )

c

p c

Ud
a Y Y

dY C T T

 


  


       (29) 

The thermal boundary conditions are  

(I)     0
T

y





 at  0y  , or  0

Y





 at 0Y           (30a) 
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(II) cT T  at   0y  , or 1   at 0Y            (30b)  

(III)  0T T  at   y w , or 0   at 
1

2
Y           (30c) 

Now let  0 cT T T     

Then Eq. (24) becomes   

2

0( )

c

c

u
Br

k T T





            (31) 

And Eq. (29) becomes  

 
2

2 2

22
4 1 64

d
a Y BrY

dY


           (32) 

The solution of Eq. (32) under the above thermal boundary conditions can be shown to be  

  2 4 2 424 16 8
( ) 1 ( 4 )

5 5 5
Y Y Y Br Y Y

 
     
 

        (33) 

In dimensional form, the temperature distribution is  

 2 4 2 4

0 0 0

24 16 8
( ) 1 ( ) 4

5 5 5
c cT T T Y Y Br T T Y Y T
 

        
 

              (34)    

Similar to Eqs. (12) – (14), the mean temperature can be found to be 

0 0 0

136 8
( ) ( )

175 175
m c cT T T Br T T T                                        (35) 

The dimensionless mean temperature is defined as  

  0

0

m
m

c

T T

T T






          (36) 

From which is obtained 

 
136 8

175 175
m Br            (37)  

Upon using  
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 1 0 m

y w

T
q h T T k

y


 
    

 
         (38) 

The expression for h  is    

 
0

y w

m

T
k

y
h

T T



 
 
 




          (39) 

From Eq. (26), 

 0cT TT

y w Y

 


 
         (40) 

 In terms of  m , h   is given by  
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w Y
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    (41) 

or 
35(2 )

17

Br
Nu

Br





                         (42) 

In this result, when 0Br  , the Nusselt number also reduces to 
70

17
Nu    as before [16].  It is noted 

that in [15], the result Eq. (42) is not mentioned, but temperature equation corresponding to Eq. (32) is 

given. However, we found that our results are different. In our Eq. (32), the second term on the right 

hand side has the coefficient 64, but in [15], it is 16. In our Eq. (33), the coefficient in the second term is      

8

5
, but in [15], it is 

2

5
. 

 2.3.2 Upper Plate at Constant Heat Flux and Lower Plate Insulated  

Consider the case where the upper plate is at constant heat flux and lower plate is insulated, which is 

Fig. 1 with 2 0q  .  

It is assumed that upper plate is kept at temperature 1T  and  lower plate is kept at temperature  2T , 

both 1T  and 2T  varying along the x  – direction.  

By introducing the following non-dimensional quantities,  
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  1

1 2

,
T Ty

Y
w T T




 


         (43) 

Eq. (5) becomes  

     

22 2 2
21 1

2

1 2 1 2 1 2

4 64c c c

p

u u udT dTw w
Y

Y dx T T dx T T c T T

 

  


   

   
  (44) 

Let 
 

2

1
3

1 2

cu dT w
a

dx T T



                       (45) 

Then Eq. (44) becomes  

22
2 2

32

1 2

(4 1 ) 64
( )

cUd
a Y Y

dY k T T

 
  


      (46) 

   

The thermal boundary conditions here are  

(I)   0
T

k
y





 at   y w  , or 0

Y





 at  

1

2
Y           (47a) 

(II)   1T T  at  y w , or 0   at 
1

2
Y           (47b) 

(III)  2T T  at  y w  , or 1   at 
1

2
Y            (47c)  

Now let 1 2T T T    Therefore Eq. (24) becomes   

 
2

1 2( )

cu
Br

k T T





         (48) 

Then  Eq. (46) becomes  

 
2

2 2

32
4 1 64

d
a Y BrY

dY


           (49) 

The solution of Eq. (49) under the above thermal boundary conditions is 

     4 2 4 23 13 1
(8 4 )

2 16 2
Y Y Y Y Br Y Y

 
       

 
    (50) 

From Eq. (43) and (50), the temperature distribution is  

   4 2 4 2

2 1 2 1 1

3 13 1
8 4

2 16 2
T T T Y Y Y Br T T Y Y T

   
            

   
  (51)    

Using  Eq. (12), the expression for mT  is found to be   
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    2 1 2 1 1

26 12
( )

35 35
mT T T T T Br T             (52) 

The dimensionless mean temperature is defined as  

  1

2 1

m
m

T T

T T






           (53) 

Therefore the expression for dimensionless means temperature is  

  
26 12

35 35
m Br            (54) 

Following  Eq. (20), the convective heat transfer is given by  

  

 

   

2 1

0.5

2 1 2 1

35 ( 2)

.
26 12 26 12

35 35

y

k T T k

w Y w
h

Br
T T T T Br





    
       

    
      

   

    (55) 

or 
35

13 6
Nu

Br



.            (56) 

In this result when 0Br  , the Nusselt number also reduces to Nu =       , which is identical to the result 

derived in section 2.2.1 when 1 0Brq  .  

 3 Graphical Results and Discussions  

The previous equations give the most useful results in the present study. This section discuses briefly the 

graphical plots of those equations. 

  

3.1 Both Plates Kept at  Different  Constant Heat Fluxes 1q   and 2q  

 

Fig. 2. Graph of Nu versus  
1qBr  
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The main physical quantity of interest, is the Nusselt number which represents the heat transfer rate 

and the wall of the plate.  The variation of the Nusselt number with the Brinkman number needs to be 

investigated. To demonstrate the effect of viscous dissipation on the Nusselt number, Eq. (21) is 

considered. However, the variation of the Nusselt number with 
1qBr  is shown in Fig 2 for heat flux ratio

2

1

26
0,1,

9

q

q
 and 5 . The choice of different heat flux ratios represents different cases. The ratio 2

1

0
q

q
  

corresponds to the case of an insulated lower plate. Similarly, 1 corresponds to the case where both 

plates are at equal constant heat flux. The ratio 
26

9
indicates the special case occurring due to the point 

of singularity at the origin. 

One may notice from the above figure that the variation of the Nusselt number with 
1qBr is not 

continuous for all the cases considered in the study, rather a clear existence of the point of singularity is 

observed in each case at different point at a different 
1qBr , as suggested by Equation (21). The different 

locations of the point of singularity are due to the different ratios of heat flux considered, and at this 

point, the shear heating balances the heat supplied by the wall. However, from this point of singularity 

as 
1qBr increases in the positive direction  

1
0qBr  , the Nusselt number decreases because of the 

decrease in the driving potential of the heat transfer, and it finally attains different constant values 

asymptotically, (when 
1qBr  ), for all the cases of heat flux taken into account. 

 

Fig .3. Graph of  1q Y  versus Y  for the case insulated lower plate 
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The  Brinkman number is an important parameter governing heat transfer and fluid flow between two 

parallel plates. Effects of viscous dissipation in a fluid flow and heat transfer phenomenon is explained 

by the Brinkman number. The paper aims in finding out the influence of viscous dissipation effects on 

the temperature profile and the resulting Nusselt number. Fig. 3  depicts the dimensionless temperature 

profile within the flow field for different 1Brq , pertaining to the case where plates are kept at different 

constant heat flux conditions obtained from Equation (11). In the case of insulated lower plate 2

1

0
q

q
  , 

Let 

  4 2 4 2

1 1

1 3 1 13 1
8 4

2 4 2 32 2
q Y Y Y Y Brq Y Y

 
         

 
 

One may observe that with increasing value of 1Brq , the temperature increases as expected. Positive 

values of 1Brq  are compactible with the wall heating case which indicates heat transfer to the fluid 

across the wall. Therefore, in the cases with positive 1Brq , the fluid temperature increases as evident 

from the above figure which shows that the curves converge at  0.5,0  and are not symmetrical about 

the vertical axis. 

3.2 Both Plates at Equal Constant Heat Flux 

 

Fig. 4. variations of temperature and Nusselt number for the case of equal heat fluxes 

Here, the variation of the dimensionless temperature profile and the Nusselt number using the 

Brinkman number defined in Equation (31), is discussed through presentation of their graphical plots 
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obtained from Equation (33) which is shown in Fig 4(a). The coresopnding Nuselt number for this case is 

Eq. (42) as shown in Fig 4(b). 

Viscous dissipation always generates a distribution of heat source, stimulating the internal energy in the 

fluid, and hence the temperature profile gets distorted as is envisaged in Figure 4(a) above.  

Figure 4(a) depicts the dimensionless temperature profile within the flow field for the wall heating case 

and wall cooling case respectively. As explained earlier that for wall heating case, the fluid temperature 

increases where as the reverse is true for the wall cooling case. Figure 4(b) exhibits the variation of the  

Nusselt number with Br . However , compared to cases with an insulated lower plate, the variation of 

the Nusselt number shows a distinct feature as Br  changes in the case of the equal constant heat flux 

condition. It is important to observe that the increase in Br  values decreases the Nusselt number and 

the asymptote appears at 17Br  . However, from the point of singularity the Nusselt number reaches 

a constant value in either direction asympiotically. 

3.3 Upper Plate at Constant Heat Flux and Lower Plate Insulated 

 

Fig. 5: Graph of Nusselt number versus Br for insulated lower plate 

The variation of Nusselt number as depicted in Figure 5 shows similarity with the results of the 

published literature [13] for no viscous dissipation, 
35

13
Nu   . in increasing Br  makes the bulk 

temperature of the fluid to increase and hence the driving potential of the heat transfer is reduced, 

which is reflected on the variation of the Nusselt number as Br  increases in the positive direction. 

However, the Nusselt number decreases asymptotically as Br  . 

4. Conclusion 

The forced convection heat transfer problem with viscous dissipation between two parallel plates 

subjected to different thermal boundary conditions has been solved mathematically, which is an 

extension of a study by Aydin and Avci [15]. Completely analytical solutions for the fluid temperature 
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and resulting Nusselt number  Nu  have been derived, the effects of the Brinkman number  Br  on 

the temperature distribution and Nusselt number have been shown through graphical plots. The 

following conclusions are drawn. 

1. The Nusselt number in the thermal region tends to decrease with an increase in the Brinkman 

number. 

2. It has been shown that viscous dissipation in the fluid can significantly influence laminar flow 

heat transfer. 

3. With regard to this study, the present analytical method can be applied to heat transfer not only 

in a channel between parallel plates but also in a concentric annulus. 

4. It can also be applied to heat transfer in a channel with a moving wall because there is no 

restriction on the velocity distribution from a fluid. 
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